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1. Introduction 9

System dynamics (SD) modeling involves visually representing the components of a com- 10

plex system—often mirroring real-world processes—and simulating their interactions to 11

predict how the system evolves over time. A key approach is stock-and-flow diagrams, 12

where stocks represent accumulative elements, while flows control their changes. Vari- 13

ables/converters help group calculations performed at each timestep for clarity, and in- 14

fluences/connectors use arrows to indicate relationships between elements. SD modeling 15

software facilitates this entire design process. 16

Recently, artificial intelligence, specifically large language models (LLMs) have been in- 17

corporated as assistive technologies within the software development programs. Examples 18

include GitHub Copilot on Visual Studio Code and Amazon Codewhisperer (‘Code- 19

Whisperer’, n.d.; ‘GitHub Copilot’, 2025). LLMs specialized in generating computer 20

programs have also been developed, such as Code Llama and Codestral (‘Codestral’, 21

2024; Rozière et al., 2024). These tools have significantly increased the productivity of 22

the user of these software development programs. The integration of such kinds of LLMs 23

into the SD modeling development environment, however, is underexplored. 24

Natural language processing has been applied for information extraction in order to 25

generate SD diagrams (causal loop diagrams, stock and flow models, etc). This includes 26

COATIS, which used causal verb patterns to identify causal relationships (Garcia, 1997); 27

Chan & Lam (2005) also explored causation relation extraction from natural language 28

text. Hosseinichimeh et al. (2024) used LLMs to construct causal loop diagrams from 29
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given textual data. Some studies evaluated the ability of LLMs to act as assistants aiding 30

a user creating a SD model. Akhavan & Jalali (2024) evaluated the use of ChatGPT in 31

the creation of SD models starting from the problem definition to the final model and 32

analysis. Liu & Keith (2024) also evaluated LLMs on the ability of generating SD models. 33

However, these studies do not feature these LLM-assistants integrated into SD modeling 34

software; rather, they interface with LLMs externally. 35

Additionally, with the recent developments of reasoning models such as OpenAI’s o3- 36

mini and DeepSeek’s R1, LLMs have the potential to perform even better on SD modeling 37

tasks (DeepSeek-AI et al., 2025; ‘OpenAI o3-mini’, n.d.). Reasoning ability enables LLMs 38

to tackle problems in multiple steps, which can possibly be beneficial for the complex 39

nature of the task of creating SD models. Therefore, this paper includes these models as 40

well to assess their performance. 41

We make the following key contributions: 42

1. We introduce an AI-powered assistant, LunaSim Copilot, directly integrated into 43

our system dynamics modeling software called LunaSim (Vedula et al., 2024), en- 44

abling seamless AI-assisted model generation and editing. 45

2. We test this AI assistant on five system dynamics examples, assessing its ability to 46

interpret and generate stock-and-flow models. 47

3. We evaluate four state-of-the-art LLMs as models behind the AI assistant, including 48

two reasoning models, comparing their accuracy and reasoning ability in assisting 49

system dynamics modeling. 50

2. Methods 51

2.1 Software Architecture 52

LunaSim Copilot is integrated into our SD modeling software called LunaSim. LunaSim is 53

a web-based SD modeling software for creating, simulating, and visualizing stock and flow 54

diagrams. Since LunaSim is web-based, LunaSim Copilot interacts with LLMs through 55

web APIs. Given a user instruction (e.g. “create a stock and flow model for modeling 56

amoeba growth”), the instruction and the LLM system prompt (which informs the LLM 57

of its objective and gives context on how to generate stock and flow models in regards to 58

rules and formatting) are sent to the LLM. The LLM then outputs the new SD model 59

in the LunaSim file format (including specifying equations of different stocks, flows, etc) 60

and the new model is loaded into the LunaSim application. Figure 1 displays an overview 61

of this architecture. 62

The LLM has access to the entire chat history, allowing the user to reference previous 63

instructions and model outputs in new instructions. Therefore, LunaSim Copilot can 64

aid in the generation of SD models from scratch or edit existing SD models as per user 65
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Figure 1: Architecture of LunaSim Copilot. The user provides an instruction to the
LLM on what changes or model generation must be made. The instruction along with
the current model details is sent to the LLM. The LLM returns a new model conforming
to this new instruction, and the new model is loaded back into the application.

instruction. Note that since LunaSim Copilot is built on top of LunaSim, the user has 66

full access to LunaSim’s features (SD model editing, equations, visualization). 67

2.2 Experimental Setup 68

2.2.1 LLMs Tested 69

We evaluated a total of four LLMs: OpenAI o3-mini, OpenAI GPT-4o, Deepseek-R1, 70

and Anthropic Claude 3.7 Sonnet (with no reasoning enabled), of which OpenaAI o3- 71

mini and Deepseek-R1 are reasoning models (‘Claude 3.7 Sonnet and Claude Code’, n.d.; 72

DeepSeek-AI et al., 2025; ‘Hello GPT-4o’, n.d.; ‘OpenAI o3-mini’, n.d.). All models were 73

used with the default hyperparameters. 74

2.2.2 SD Model Generation 75

Each of the four LLMs were evaluated on five tasks. These tasks required the LLM to 76

generate the SD model schema (according to the LunaSim model format) given a request 77

from the user. These SD models were the following: 78
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• Algae growth: simple logistic regression model 79

• Hooke’s law: oscillating spring with weight on the end pulled by gravity 80

• Projectile motion: 2D model of a projectile factoring in air resistance 81

• Trebuchet: simulates a see-saw-like catapult using rotational motion, as outlined 82

in Vedula et al. (2024) 83

• Binary stars: simulates the trajectories of two planetary objects that exert a 84

gravitational force on each other, as outlined in Vedula et al. (2024) 85

The LLM was required to generate the SD model from scratch, with only given the 86

system prompt and the user instruction, i.e., it did not have an existing SD model to 87

build from. LLM outputs were evaluated using rubrics created for each kind of SD model 88

task. Each rubric consisted of a general section and the SD model-specific section. The 89

general rubric assessed the validity of the LLM output: whether it correctly outputs into 90

LunaSim’s (JSON-based) expected format. This not only includes whether the SD model 91

loads into LunaSim, but also whether the SD model follows the rules of system dynam- 92

ics (e.g. influences cannot point into stocks). The SD model-specific section evaluated 93

the accuracy of LLM output with respect to an exemplar SD model for that particular 94

scenario. The presence of specific elements (e.g. a stock representing x-position for the 95

projectile motion scenario) are evaluated. Accuracy of corresponding equations for each of 96

these elements is also assessed. The totals for both parts of these rubrics were calculated 97

and compared among different LLMs. Rubrics are included in Appendix C. 98

3. Results 99

Table 1 displays the performance of the LLMs on the five tasks. o3-mini had the highest 100

average score of 94.6% along with the lowest standard deviation of 8.4%. While GPT- 101

4o performed decent on the simple Algae growth and Hooke’s law examples, it severely 102

underperformed on the other three (more complex) scenarios. Claude 3.7 and o3-mini 103

performed significantly better on all of the five scenarios, while Deepseek-R1 struggled 104

with the Trebuchet SD model task. Three of the four models (all except GPT-4o) per- 105

formed the lowest on the trebuchet task. Claude 3.7 and o3-mini were the two models 106

that achieved perfect scores, with Claude 3.7 acing the Algae growth and Binary stars 107

tasks and o3-mini acing Algae growth and Hooke’s law tasks. Specific model scores, 108

visualizations of SD models, and summaries on missed points are in Appendix A. 109
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Table 1: LLM performance on each task based on the rubrics. Values are percentage
correct, with rubrics assessing whether the LLM output adheres to SD modeling rules
and whether the LLM output is in the valid format.

Accuracy (% of total points from rubric)
SD Model GPT-4o Claude 3.7 o3-mini Deepseek-R1

Algae growth 84.1 100.0 100.0 97.7
Hooke’s law 88.2 90.2 100.0 94.1

Projectile motion 46.4 76.8 97.1 100
Trebuchet 58.0 86.0 80.0 67.0

Binary stars 57.3 100.0 95.8 97.9
Average: 66.8 90.6 94.6 91.3
Std. Dev: 18.3 9.9 8.4 13.8

4. Discussion 110

Our study highlights the promising capability of LLMs in assisting in SD modeling. 111

Claude 3.7, o3-mini, and Deepseek-R1 particularly displayed significant capability of gen- 112

erating SD models given high-level user instructions. These LLMs illustrated the ability 113

to discern the kind of element (stock, flow, variable) a given component of a simulation 114

should be, since the prompts given to them did not mention the specifics of the types of 115

elements each component should be. LLMs also displayed the ability to predict interme- 116

diate components of the SD model scenarios: components that were neither the input nor 117

output elements outlined by the prompts. 118

Despite reasoning models being intended for excelling at multi-step problems such as 119

generating SD models, Claude 3.7 (which was ran without reasoning mode) had compar- 120

able performance to the two reasoning models: o3-mini and Deepseek-R1. Additionally, 121

the trebuchet SD model proved more difficult for the three models than the binary star 122

system. This might be due to the fact that the trebuchet model contained less stocks- 123

and-flow relationships, rather having more complex equations underlying those limited 124

stock-and-flow relationships. This is in contrast with the binary star model, which had 125

many more stock-and-flow relations but with simpler equations. The improved perform- 126

ance on the binary star system from these LLMs suggests that SD models that are more 127

broken down to simpler components (as is the objective of SD) are easier for LLMs to 128

create. 129

This study, by evaluating these LLMs through the LunaSim Copilot framework, as- 130

sessed not only the ability of LLMs to “think” in terms of SD, but also the practical 131

ability of them to output in a usable (i.e. directly loadable, visually clear) SD format. 132

Since our rubrics contained evaluations of whether the model loads correctly and qual- 133

ity of element positioning, this study illustrates the ability for LLMs to assist SD model 134

generation seamlessly through direct integration into a SD modeling software. 135
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4.1 Limitations 136

Figure 2: Example of incoherent element placement.

Our study faces certain limitations. The current version of LunaSim Copilot does not 137

support ghosting, limiting the degree to which outputs can be graphically organized. Ad- 138

ditionally, LLMs inherently do not have the ability to visualize the placement of stocks 139

and flows (which was evaluated through assessing position quality of LLM-generated mod- 140

els in this study), hindering the visual organization of SD models. This can lead to some 141

cases where LLM-generated SD models are jumbled. However, many of these cases are 142

easily resolved through user intervention by dragging the elements around in LunaSim. 143

The evaluation rubric used in this study may not always capture the full spectrum of 144

model quality, potentially affecting assessment reliability. Specifically, the point weights 145

in the rubric are not definitive, as SD model quality (apart from whether the model yields 146

the same values) is subjective. In addition, the study focuses on four LLMs, which can 147

be expanded to include other models as well. Finally, this study does not utilize multiple 148

human evaluators of SD models. 149

6



5. Conclusion 150

Code & Data Availability 151

The data availability statement should provide information on where and under what 152

conditions the data directly supporting the publication can be accessed. Sample data 153

availability statements are available at the following site: https://academic.oup.com/ 154

pages/open-research/research-data#Data%20Availability%20Statements. 155
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Appendix 198

A. SD Model & Score Details 199

A.1 Algae Growth 200

Prompt: Create a model to simulate the growth of an algae colony using a logistic growth 201

curve. Add a carrying capacity, initial population, and a coefficient of growth. 202

Figure A1: Algae SD Model

Table A1: Subscores for Algae Growth Model

Criteria GPT-4o Claude 3.7 o3-mini Deepseek-R1 Max Points
General Rubric

Output Integrity 5 5 5 5 5
Names 5 5 5 5 5
Flows 1 1 1 1 1

Variables 3 3 3 2 3
Positioning 2 4 4 4 4

SD model-specific rubric
Initial Conditions 6 6 6 6 6

Relationships 15 20 20 20 20
Summary

Total 37 44 44 43 44

Comments: 203

• GPT-4o: A bit messier than o3-mini but got the main components correct 204

• Deepseek-R1: Initial population hardcoded 205

A.2 Hooke’s Law 206

Prompt: Create a model for the oscillating motion of a block on a spring according to 207

Hooke’s law. Initial variables should be starting position, mass, and the spring constant. 208

The block originally starts at rest. 209
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Figure A2: Hooke’s Law SD Model

Table A2: Subscores for Hooke’s Law Model

Criteria GPT-4o Claude 3.7 o3-mini Deepseek-R1 Max Points
General Rubric

Output Integrity 0 5 5 5 5
Names 5 5 5 5 5
Flows 2 2 2 2 2

Variables 2 3 3 2 3
Positioning 4 4 4 2 4

SD model-specific rubric
Initial Conditions 6 6 6 6 6

Relationships 26 21 26 26 26
Summary

Total 45 46 51 48 51

Comments: 210

• GPT-4o: Included comments in JSON which made the file invalid. Hardcoded 211

initial position. 212

• Claude 3.7: Almost perfect besides minor issue in position equation. 213

• Deepseek-R1: Bad positioning & hardcoded start position. Correct numerical 214

output however. 215

A.3 Projectile Motion 216

Prompt: Create a model for 2D projectile motion. Initial variables should be start- 217

ing position, mass, and angle. Incorporate a drag coefficient that affects acceleration 218
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proportional to velocity. 219

Figure A3: Projectile SD Model

Table A3: Subscores for Projectile Motion Model

Criteria GPT-4o Claude 3.7 o3-mini Deepseek-R1 Max Points
General Rubric

Output Integrity 5 5 5 5 5
Names 5 5 5 5 5
Flows 1 4 4 4 4

Variables 5 7 7 7 7
Positioning 2 4 2 4 4

SD model-specific rubric
Initial Conditions 8 14 14 14 14

Relationships 6 14 30 30 30
Summary

Total 32 53 67 69 69

Comments: 220

• GPT-4o: Failed to split initial conditions into x-y components. Flows were drawn 221

from stocks (incorrect) instead of creating a cloud source element. Correct equation 222

but incorrect flow origin. 223

• Claude 3.7: Notably, used angles in degrees and converted to RAD for flow/stock 224

equations. Drag coefficient equation was incorrect which led to incorrect numerical 225

results. However, excellent model structure. 226
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• o3-mini: All equations and relationships perfect, spacing of elements could be 227

better however 228

A.4 Trebuchet 229

Prompt: Create a model that simulates the movement of a trebuchet. The arm of 230

the trebuchet can be simulated by a line segment that rotates around a fixed point. 231

Initial variables include the length and mass of the portion of the trebuchet arm with 232

the projectile and the length and mass of the portion of the trebuchet arm with the 233

counterweight. The mass of the projectile and the counterweight are also initial variables. 234

Finally, include the starting angle of the trebuchet as a variable. Other constants such as 235

gravity should also be stored as variables. The output stocks/variables for the simulation 236

should be: beam angular speed & angular acceleration, the launch velocity (speed & 237

angle components) of the projectile at any given moment. Make an appropriate element 238

for each of these. Any other helper nodes or elements can be created if necessary. 239

Figure A4: Trebuchet SD Model
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Table A4: Subscores for Trebuchet Model

Criteria GPT-4o Claude 3.7 o3-mini Deepseek-R1 Max Points
General Rubric

Output Integrity 5 5 5 5 5
Names 5 5 5 5 5
Flows 0 2 2 2 2

Variables 8 10 10 7 10
Positioning 2 4 4 2 4

SD model-specific rubric
Initial Conditions 16 16 16 12 16

Relationships 16 44 38 34 58
Summary

Total 58 86 80 67 100

Comments: 240

• GPT-4o: Failed to recognize the difference between when to use a stock or variable 241

for output. No angle stock. Incorrect flow origins, no clouds. Treated trebuchet arm 242

as a point mass rather than a rotating bar for inertia. Did not incorporate angle 243

or trebuchet arm into torque. Failed to establish a relationship between angular 244

acceleration, angular speed, and angular position. Failed to differentiate between 245

project launch angle/speed and beam angular speed. 246

• Claude 3.7: Treated trebuchet arm as a point mass at the same location as the 247

projectile/counterweight rather than a rotating bar for inertia. Did not incorporate 248

trebuchet arm into torque. Very close to the answer key. 249

• o3-mini: Very impressive performance with logical element placement. The model 250

failed to incorporate the weight of the trebuchet arm into either torque or inertia, 251

causing inaccuracies in the final output model. The model also used Math.sin in- 252

stead of the correct Math.cos in torque calculations. However, there is a significant 253

similarity between the model produced by the AI and the answer key model. 254

• Deepseek-R1: Failed to incorporate the mass of the trebuchet arm into any com- 255

ponent of the model. Treated the trebuchet as a simple “two-point” system and 256

ignored the trebuchet arm itself. Failed to create the requested launch angle output 257

variable. 258

A.5 Binary Stars 259

Prompt: Create a model that simulates a binary star system in space. Initial variables 260

should specify the masses of each star. The starting x and y-positions and starting x and 261

y-velocities of each star can be hard-coded into the initial values of the relevant stocks. 262

The two stars should move and orbit around each other, and the only force acting on 263

either star should be the force of each star’s gravity on the other. Any other constants 264
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should be stored in variables. Create intermediate variables storing the force of gravity 265

on each star (x-y components), the acceleration of each star (x-y components), and the 266

distance between the two stars (overall & x-y components) at any given time. 267

Figure A5: Binary Stars SD Model

Table A5: Subscores for Binary Stars Model

Criteria GPT-4o Claude 3.7 o3-mini Deepseek-R1 Max Points
General Rubric

Output Integrity 5 5 5 5 5
Names 5 5 5 5 5
Flows 2 8 8 8 8

Variables 12 12 10 10 12
Positioning 2 4 2 4 4

SD model-specific rubric
Initial Conditions 12 12 12 12 12

Relationships 17 50 50 50 50
Summary

Total 55 96 92 94 96

Comments: 268

• GPT-4o: Equations seem correct but the model fails to understand how flow re- 269

lationships connect related elements or how the variables should interact with each 270

other. Understands the principles behind a binary star system but fails to correctly 271

integrate them into a new scenario. 272

• o3-mini: Output exactly matches the answer key, very impressive. Struggles with 273

positioning of elements graphically. Failed to create the requested output variables 274

for Fg2. 275
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• Deepseek-R1: Matches output model exactly, good spatial reasoning when placing 276

elements. Failed to create the requested output variables for Fg2. 277

B. System Prompt 278

The system prompt used for the LLM is available at https://github.com/oboy-1/ 279

LunaSimCopilot/blob/main/prompts/prompt.txt 280

C. Rubrics 281
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Table C2: Sample SD Model Specific Rubric (for Projectile Motion)

Criteria Scoring Max Points
Output Integrity 5
Names 5 (min 0)
Flows Cloud → xVel

Cloud → xPos
Cloud → yVel
Cloud → yPos 4

Variables Initial conditions and other constants are
properly expressed as variables:
initX
initY
initVel
initAngle
gravity
mass
dragCoeff 7

Positioning Elements are appropriately placed 4
Specific Model Rubric

Initial Conditions

Reasonable values are set for each of the
following, including any equations if further
calculations are needed to transform the
model parameters:
2pts - xPos
2pts - yPos
2pts - Initial Speed
2pts - Initial Angle
2pts - Drag Coeff
2pts - Mass
2pts - Gravity 14

Relationships

Variables may be renamed if model does not run
(penalize in general rubric).
If model still does not run, -5pts per misc.
necessary element change for model to run.
2pts - Initial Pos
2pts - Initial Vel.
2pts - Correct Gravity
4pts - Acceleration to Velocity
4pts - Velocity to Position
4pts - Drag Coefficient affects Velocity
12pts - Numerical Correctness 30
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